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Abstract

A reservoir-type transdermal delivery system (TDS) of bupranolol (BPL) was designed and evaluated for different formulation
variables like gel reservoirs (made with anionic and nonionic polymers), rate controlling membranes and penetration enhancers
on the drug release and in vitro skin permeation kinetics of the devices. Keshary–Chien type diffusion cells and pH 7.4 phosphate
buffered saline (PBS) were used for drug release studies and excised rat skin was used as a barrier for permeation experiments.
The release rate of BPL from nonionic polymer gel reservoirs [hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose
(HPC)] was much higher than anionic polymer gel reservoirs [carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose
(Na CMC) and sodium alginate)]. Among different rate controlling membranes, Cotran
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emonstrated highest release rate for BPL than all other membranes. An optimized TDS formulation with HPC gel and
TM

-
olyethylene microporous membrane was used to study the effect of penetration enhancers on the release and skin
ate of BPL from the TDS. Permeation rates of the devices containing 5% (w/v) pyrrolidone (PY) or 1-methyl-2-pyrr
MPY) were about 3- and 1.5-fold higher than control (no enhancer,P< 0.01) indicating PY to be better penetration enhance
PL than MPY. The permeation rates of devices containing partially methylated�-cyclodextrin (PM�CD) and PM�CD–BPL
omplex were about 2.5- and 1.4-fold higher than control (P< 0.01). Inclusion of 10 and 30% w/v propylene glycol (PG) in
evices increased the permeation rate by 1.4- and 1.8-fold higher than control (P< 0.05). In conclusion, reservoir-type TDS
PL was developed and penetration enhancers increased the skin permeation of BPL at 4–5 times higher levels than

arget delivery rate.
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1. Introduction

Transdermal delivery is a successful controlled
lease technology in terms of the number of appro
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products, which are on the market (Guy, 1996). The fea-
sibility of transdermal route for systemic drug delivery
has lead to successful development and marketing of
transdermal delivery systems (TDS) of several drugs. It
is expected that many more drugs will be included in the
list of successful TDS formulations. Presently several
classes of drugs are under investigation to determine
their potential for TDS development. The penetration
through stratum corneum is the rate-limiting step for
delivery of most of the drugs and this has lead to consid-
erable activity towards different percutaneous penetra-
tion enhancement technologies (Prausnitz et al., 2004).
Chemical penetration enhancement has been studied
most extensively and is expected to play a leading role
in the introduction of more TDS products

Bupranolol (BPL) is a potent nonselective beta-
blocking agent, without intrinsic sympathomimetic ac-
tivity (Weisser et al., 1989). Upon oral administration
it undergoes an extra-ordinary first-pass metabolism
(>90% in humans) and is rapidly eliminated with a bio-
logical half-life of∼2.0 h (Waller et al., 1982,Wellstein
et al., 1986). This demands multiple ingestion of high
oral dose of BPL for its clinical effects (100–400 mg per
day in divided doses,Raynolds, 1996). The physico-
chemical, pharmacokinetic and pharmacological prop-
erties of this drug make it well suited for TDS develop-
ment. The skin permeation of BPL base was enhanced
by using penetration enhancers (Green et al., 1989), and
microemulsion bases saturated with BPL (Kemken et
al., 1992). Cordes et al. (1988)developed an adhesive
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technology and approved by FDA for marketing, e.g.,
Transderm-Nitro

TM
Estraderm

TM
, Duragesic

TM
(Chien,

1992; Southam, 1995).
The objective of the present investigation was to

develop a reservoir-type TDS of BPL using various
gel formulations and skin penetration enhancers. The
effect of gelling agent, rate controlling membrane and
skin penetration enhancer was investigated in order to
optimize the delivery of BPL from a reservoir-type of
TDS through rat skin as a permeation barrier.

2. Materials and methods

2.1. Materials

Bupranolol hydrochloride was provided by Schwarz
Pharma AG (Manheim, Germany) as a generous gift
sample. Bupranolol base was prepared from its HCl
salt as reported earlier (Babu and Pandit, 2004) and
BPL base was used in this study. Both BPL base
and BPL–PM�CD (1:1) inclusion complex were pre-
pared and characterized as described earlier (Babu
and Pandit, 2004). Partially methylated�-cyclodextrin
(PM�CD) was a gift from Rue Ballu (Paris, France).
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Reservoir-type TDS consists of a drug reservoir
solution or gel) in between the impermeable ba

ng laminate and a rate controlling membrane.
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pecific drug permeability). On the external surfac
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Fig. 1. Schematic of various components in the preparation of
reservoir-type TDS of BPL.

2.2. Preparation of reservoir TDS

Reservoir-type TDS were prepared with an active
membrane release area of 3.14 cm2. Fig. 1 shows the
schematic of TDS preparation in the present study.

2.2.1. Preparation of BPL gels
The composition of various batches of gel formu-

lations is given inTable 1. In all cases the drug was
dissolved in isopropyl alcohol (IPA) in screw-capped
vials and diluted with water whilst stirring. The drug
thus precipitated was then gelled by addition of an
appropriate gelling agent by stirring for about 2 h at
3000 rpm. Various enhancers were incorporated in the
gel formulations before addition of the gelling polymer.
In the case of PM�CD–BPL complex, the complex was
directly suspended in IPA-water mixture whilst stir-
ring and gelling polymer was added and stirred well to
form a gel. The drug content uniformity was tested for
all the batches of gels. The gels (0.1 g) were weighed

into screw-capped vials and mixed well with 10 ml of
phosphate buffered saline. The drug content of samples
was determined spectrophotometrically at theλmax of
275 nm.

2.2.2. Preparation of ‘drug-loaded
adhesive-membrane laminates’

CoTran
TM

-pharmaceutical grade transfer adhesive
on a release liner was used in the preparation of reser-
voir TDS. The thickness and content per area of the
adhesive layer were 50�m and 5 mg/cm2, respectively.
The drug (5%, w/w of polymer or 0.25 mg/cm2) was
dissolved in 25 ml of IPA and cast on a leveled sur-
face of the adhesive layer (edges slightly raised to hold
the drug solution) and allowed to dry at room temper-
ature for 24 h. A clear layer of drug-in-adhesive was
obtained and the drug content uniformity of the adhe-
sive layer was ensured to be within±5% of coefficient
of variation. Different membranes under study were cut
into circular discs of 4.91 cm2 area and laminated with
drug loaded adhesive on release liner thus an ‘adhesive-
membrane laminate’ was obtained.

2.2.3. Preparation of a complete device
Polypropylene spacers (internal diameter, 20 mm

and thickness, 3.2 mm) were used to hold the gel in
the device. The capacity of the spacer was 1 cm3.
The spacer was attached to the ‘drug-loaded adhesive-
membrane laminate’ using an epoxy resin to obtain an
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Table 1
Composition of gel formulations in the preparation of reservoir-type TDS

(%, w/v) Batch code

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

CMC 3.0 – – – – – – – – – – –
Na CMC 3.0
HPMC – – 3.0 – – – – – – – – –
Na alginate – – – 5.0 – – – – – – – –
HPC-M – – – – 5.0 – – – – – – –
HPC-H – – – – – 5.0 5.0 5.0 5.0 5.0 5.0 5.0
PY – – – – – – 5.0 – – – – –
MPY – – – – – – – 5.0 – – – –
PM�CD – – – – – – – – 10.0 – – –
BPL-complex – – – – – – – – – 5.92a – –
PG – – – – – – – – – – 10 30
BPL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 – 1.0 1.0
IPA 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Water q.s. 100 100 100 100 100 100 100 100 100 100 100 100

Amount of gel prepared = 15 g per batch. CMC: carboxymethyl cellulose; Na CMC: sodium carboxymethyl cellulose; HPMC: hydroxypropyl
methyl cellulose; HPC-M: hydroxypropyl cellulose-medium viscosity; HPC-H: hydroxypropyl cellulose -high viscosity; PY: 2-pyrrolidone;
MPY: 1-methyl 2-pyrrolidone; PM�CD: partially methylated� cyclodextrin; BPL-complex: burpanolol-PM�CD complex; PG: propylene
glycol; BPL: bupranolol; IPA: isopropyl alcohol.

a Equivalent to 1.0 g of BPL.

Vertical glass diffusion cells (Keshary–Chien type)
were used for release and skin permeation studies. The
skin was mounted between donor and receptor com-
partments, such that the epidermal surface facing the
donor compartment. The TDS was fixed on the epider-
mal surface, donor and receptor compartments were
clamped together and placed in a water bath maintained
at 37± 0.5◦C. The volume of receptor cell was 17 ml
and the effective surface area available for permeation
was 3.14 cm2. The receptor cell was filled with pH 7.4
phosphate buffered saline (PBS) containing 0.5% (v/v)
of 36% aqueous formaldehyde solution as a preser-
vative. The hydrodynamics of the receptor fluid was
maintained by stirring the fluid at 600 rpm with a star
head magnetic bead.

Samples (10 ml) were withdrawn at predetermined
time intervals, the remaining fluid in the cell was
drained off, rinsed thrice quickly with 3 ml× 5 ml of
fresh buffer and filled with fresh receptor medium
(maintained at 37◦C) and the experiment was recom-
menced. All experiments were carried out at least in
three replicates.

For release studies, the same procedure as described
as above was followed, but without the skin sample.
PBS was used as receptor medium and sink condition

was maintained by replacing the fluid at every sam-
pling interval with fresh receptor medium (maintained
at 37◦C). All experiments were carried out in triplicate.

2.4. Analysis of BPL

Analysis of BPL in the skin permeation samples
was carried out by the method reported byLeBrun
et al., 1989. The samples (10 ml) were collected into
30 ml capacity screw capped vials with Teflon lined
caps. The pH of each sample was adjusted to 12.5
with 4N NaOH. To this 5 ml of dichloromethane
was added; the BPL content of samples were ex-
tracted into dichloromethane by shaking for 30 min
on a rotary shaker. The samples were centrifuged;
dichloromethane layer was separated and dehydrated
with anhydrous sodium sulphate. The UV absorption
of dichloromethane layer was determined atλmax of
285 nm. The concentration of samples was calculated
from the slope of a pre-constructed calibration curve.
The calibration samples were extracted by the pro-
cedure as described above and the UV absorbance
was measured. The absorbance was linear in the range
5–100�g/ml, with a slope of 0.0084 and a correlation
coefficient of 0.99968.
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2.5. Data analysis

The cumulative amount (mg/cm2) of BPL perme-
ated through skin was plotted as a function of time (h).
The slope of the linear portion of the plot is presented
as the flux (�g/cm2/h). The flux data were subjected to
one-way analysis of variance (ANOVA) followed by
Tukey’s post-test to determine the level of significance
between various groups. The data were considered to
be significant atP< 0.05.

3. Results and discussion

The development of once-a-day TDS for BPL re-
quires an appropriate selection of reservoir materi-
als and device components. Using the published data
(Green et al., 1989; Wellstein et al., 1986) for effective
therapeutic plasma concentration:Cp = 2.4 ng/ml; vol-
ume of distribution:Vd = 375 l; elimination rate from
plasma:Kel = 0.347 h−1 and also assuming that area of
applicable system:A= 25 cm2; the target delivery rate
of BPL (K0) is calculated (12.5�g/cm2/h) using the
equation:

AK0 = CpVdKel

Bupranolol base possesses a favorable octanol-
water partition coefficient (logKp, 2.97) for transder-
mal delivery. The present study employed base form

of drug as the base is about 15 times more perme-
able than the HCl salt (Cordes et al., 1988). In this
study, reservoir-type TDS of BPL was prepared with
different gel reservoirs (R1–R6), rate controlling mem-
branes (PE, EVA, NYLON and CAN) and penetration
enhancers. The drug was present in the gel in a dis-
persed state to provide maximum thermodynamic ac-
tivity of the formulation. The drug content of the gel
was found to be within±5% of coefficient of variation
of the total drug content of the gel.

3.1. Effect of different gel reservoirs and rate
controlling membranes

The release profiles of TDS followed matrix diffu-
sion kinetics, i.e., quantity released (Q) is proportional
to square root of time (t1/2), as shown inTable 2. The re-
lease rate of BPL from nonionic polymer gels (HPMC,
HPC) was much higher than those from anionic poly-
mer gels. The pH of the gels, except CMC gel was in
the range of 7.4–7.8. The pKa of BPL (9.49) indicates
it was 99% ionized at this pH range, but the drug re-
mained mostly in the suspended form. In the case of
CMC, the pH of the gel was at 4.4 and addition of BPL
raised the pH to approximately to 4.8. The retarded re-
lease of BPL by anionic polymers may be probably due
to complexation of BPL with the polymers. Among the
devices with nonionic polymer gels, R5-PE and R6-PE
(HPC-M and HPC-H as gel reservoirs, respectively)
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elease rate constant (mg/cm2/h1/2) Correlation coefficient (r2)

1380± 0.0134 0.9464
110± 0.0057 0.9843
544± 0.0100 0.9952
801± 0.0018 0.9967
259± 0.0211 0.9932
416± 0.0157 0.9973

.1787± 0.0056 0.9941
48± 0.0110 0.9904
08± 0.0082 0.9989

0.6091± 0.0179 0.9974
571± 0.0131 0.9977
916± 0.0180 0.9976
498± 0.0147 0.9973
679± 0.0181 0.9979
363± 0.0150 0.9972
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showed maximum release of BPL. The device R3-PE
(HPMC as gel reservoir) showed relatively less release
rate as compared to R5-PE or R6-PE. The devices con-
taining anionic polymers (R1-PE, R2-PE and R4-PE)
show minimal BPL release and the release rates of BPL
by all these devices were approximately 5-fold lower
than R6-PE.

The release of atenolol (Demou et al., 1994), timolol
(O’Nell and Deasy, 1988) and propranolol (Takka et al.,
2001) was also much lower due to anionic polymers as
gelling agents. The retarded release with anionic poly-
mer gels is presumably due to binding of ionized drug
to the polyanion (O’Nell and Deasy, 1988). Bupranolol
being a cationic drug, the amine groups of the drug are
believed to interact with carbonyl groups of the anionic
polymers and thereby the drug release is retarded from
the anionic gel matrix.

Due to porous nature of the polyethylene membrane,
it provides least resistance to the diffusion of drug
molecules, as the permeation through the membrane
is governed by the diffusion of drug molecules through
the liquid retained in the pores of the membrane. The
adhesive employed is highly permeable and provides
less resistance to diffusion. Thus, the differences in the
release profiles of various devices are attributed to the
reservoir composition. The reservoir composition ap-
pears to be crucial in determining drug release, unlike
nonporous membranes where partitioning and diffu-
sion through continuum are likely to be more predom-
inant.
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3.2. Effect of penetration enhancers
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The effect of various penetration enhancers on the

release rates of BPL from TDS is presented inTable 2.
There was no significant difference between the release
rates of different formulations. It has been reported
that the release of bendroflumethiazide through a mi-
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Fig. 2. Effect of PY and MPY on the skin permeation profiles of BPL from reservoir-type TDS.

The effect of PM�CD as a penetration enhancer on
the permeation of BPL is presented inFig. 3. The per-
meation rate of R9-PE containing PM�CD is about
2.5-fold higher than R6-PE (P< 0.01). A comparison
of the device R9-PE with R10-PE indicates that the flux
of R9-PE is 1.8 times higher than R10-PE (P< 0.05). In
the device R9-PE, PM�CD was used at 10% (w/w) con-
centration as penetration enhancer; whereas in the case
of R10-PE, an inclusion complex of BPL–PM�CD (in
1:1 molar ratio) was employed in the fabrication of
TDS. From the results of saturation solubility studies
it was observed that the solubility of BPL increased
substantially by 10% (w/w) PM�CD, due to complex
formation (Babu and Pandit, 2004). This increase is
1.5 times higher than the solubility of BPL–PM�CD
inclusion complex. From the results it appears that it
is not necessary to use inclusion complex, but sim-
ple addition of PM�CD to the formulation is suffi-
cient to improve the permeability of BPL. The perme-
ation of hydrocortisone was higher with an ointment
or hydrogel containing hydrocortisone-HP�CD com-
plex, than by adding HP�CD separately in the formu-
lation (Preiss et al., 1994). In contrast the results of
Loftsson et al., (1994)indicate that incorporation of
HP�CD into an aqueous cream base containing hy-

drocortisone dramatically improved the flux through a
synthetic membrane. The present study also indicates
that the permeation of BPL can be increased by incor-
poration of PM�CD into a gel formulation. The higher
permeation rate of R9-PE is due to higher amount of
PM�CD in this formulation, which has greater solu-
bilizing and skin permeation effect on BPL. This may
be due to the combined effect of increased aqueous
solubility of BPL and reduced barrier function of skin
by PM�CD. Methylated�CDs are known to interact
with stratum corneum components of rat skin and im-
prove drug absorption (Larrucea et al., 2002). Methy-
lated�CDs extract all the major lipid classes and pro-
teins and reduce barrier function of skin (Vollmer et al.,
1993, 1994). We reported recently the effect of pretreat-
ment of rat skin with CDs on permeation of BPL (Babu
and Pandit, 2004). Skin pretreatment with PM�CD at
10% (w/w) concentration increased the flux by 1.7-
fold. Thus, PM�CD reduced the skin barrier function
for BPL, probably by interacting with stratum corneum
lipids.

The effect of propylene glycol (PG) as a penetra-
tion enhancer on the permeation of BPL is presented
in Fig. 4. Inclusion of PG in devices R11-PE and R12-
PE increased the permeation rate significantly versus
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Fig. 3. Effect of PM�CD and PM�CD–BPL complex on the skin permeation profiles of BPL from reservoir-type TDS.

Fig. 4. Effect of PG on the skin permeation profiles of BPL from reservoir-type TDS.
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R6-PE (no enhancer,P< 0.05). Increase in the PG con-
centration from 10% (R12-PE) to 30% (R13-PE) has
no significant effect on the flux of BPL (P> 0.05).
PG is ‘generally recognized as safe’ solvent and em-
ployed as a topical vehicle to improve the solubility
of lipophilic drugs. PG shows penetration enhance-
ment activity towards 5-fluorouracil (Rigg and Barry,
1990), progesterone (Valenta and Wedding, 1997) and
estradiol (Goodman and Barry, 1988). In the present
study PG at 30% (w/w) improved the permeation
of BPL by 1.8-fold versus control as shown by flux
data.

The results of the present study indicate that a TDS
can be fabricated by using HPC gel reservoir and micro-
porous polypropylene membrane. By employing PY
or PM�CD as enhancers the flux of BPL could be en-
hanced 4–5 times above the target delivery rate. The ad-
hesive CoTran-PGTA maintained its adhesive proper-
ties in the presence of penetration enhancers with no ap-
parent change over 24 h. These experiments were per-
formed using full thickness rat skin. Full thickness skin
in vitro represents an artificially higher barrier to ab-
sorption of lipophilic compounds, relative to the same
skin in vivo (Bronaugh and Stewart, 1984, 1986). This
barrier in vitro is thought to arise from the lack of blood
capillaries that are present in vivo to help clear low
water soluble drugs. The in vitro permeation of BPL
through dermatomed human skin was much higher than
full thickness skin (Green et al., 1989). The data col-
lected using full thickness rat skin indicate that it is
p ting
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